In workshop notes of the 1st International Workshop on Model-based Requirements Engineering,
San Diego, California, November 30, 2001.

Cost-Benefit Based Assurance Planning

Martin S. Feather, Steven L. Cornford, Julia Dunphy
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109, USA
{Martin.S.Feather, Steven.L.Cornford , Julia.Dunphy } @Jpl.Nasa.Gov

Abstract

An important aspect of critical systems design is
the planning of the activities needed to assure the
correctness of those systems. Design is inevitably
resource-constrained, and by implication, so are
assurance activities. Their planning must take into
account both their costs, and their benefits.

We have extended an existing risk management
framework with a refined cost-benefit model. Benefits
are measured in terms of reduction of risk — both risk
in the development process itself, and risk in the
developed artifact. Cost calculations take into account
both costs of performance of the assurance activity
(e.g., inspection, analysis, test) and costs of repair
(work needed to repair discovered defects). The
custom-built tool that supports risk management has
been extended accordingly.

The net result is a framework that supports
expert users in making cost-benefit based planning
decisions. Details of our approach, current status, and
future challenges, are presented.

Keywords: Risk, requirements tradeoffs, design,
quality assurance; Validation and Verification
(V&V); risk management; Return On Investment
(ROI), software quality; software process
improvement; optimization; genetic algorithms;
learning; NASA.

1 INTRODUCTION

Design is inevitably resource-constrained.
Design encompasses the activities needed to analyze,
test, repair, etc., artifacts in the course of their
development. Design efforts must select these
activities judiciously, so as to make most effective use
of limited resources. Rarely, if ever, can a project
afford to apply all such possible activities to all
portions of the design.

The goal of our work is to facilitate cost-benefit
based planning of design, with a particular focus on
the assurance aspects. Such cost-benefit based
assurance planning is an enabler of the following
activities:

* developing a plan that minimizes risk with the
available resources;

* developing a plan that minimizes the resources
needed to reduce risk to an acceptable level;

¢ identifying the requirements proving the most
costly to attain (and therefore are leading
candidates for discarding if the resources cannot
be expanded, and the risk is unacceptably high).

The common theme underlying these is tradeoff,
between benefits in the form of requirements
attainment, and costs in the form of resources spent to
mitigate risks. The focus of this paper is on our
detailed cost-benefit model that makes such tradeoff
possible. The rest of this paper is organized as
follows:

Section 2 - background to this work, a previously
developed risk management framework.

Section 3 - our refined cost-benefit model, which
augments the existing risk management framework.
Section 4 - the detailed formulae of our refined
model.

Section 5 - ramifications of the model.

Section 6 - status and challenges.

Section 7 - related work and conclusions.

2 BACKGROUND

Our starting point is a NASA-developed risk
management framework, the Defect Detection and
Prevention (DDP) tool for risk assessment, planning
and management [Cornford et al, 2001]. In this
section we summarize the salient aspects of the DDP
risk model.

DDP deals with requirements, risks and risk
mitigations. Risks are quantitatively related to
requirements, to indicate how much each risk, should
it occur, impacts each requirement. Mitigations are
quantitatively related to risks, to indicate how
effectively each mitigation, should it be applied,
reduces each risk. A set of mitigations achieves
benefits (requirements are met because the risks that
impact them are reduced by the selected mitigations),
but incurs costs (the sum total cost of performing
those mitigations). The main purpose of DDP is to
facilitate the judicious selection of a set of
mitigations, attaining requirements in a cost-effective
manner.

In more detail, DDP deals with the following
concepts:

Requirements — what the design is to achieve.
Requirements are assigned weights, representing their

relative importance.

Risks — things that, should they occur, will lead
to loss of requirements. Risks are assigned an a-priori
likelihood (the chance of the risk occurring, if nothing
is done to inhibit it).

Mitigations — activities that could be done to
reduce the likelihood of failure modes and/or reduce
their impact on requirements. Mitigations are assigned
costs, the costs of performing them.

Impacts — for each Requirement x Risk pair, how
much of that Requirement will be lost should that
Risk occur.

Effects — for each Mitigation x Risk pair, the
extent to which that Mitigation will reduce the risk.

These combine in the following ways:

Each impact is expressed as a number in the
range [0 — 1] representing the proportion of the
requirement that is lost if that risk occurs. Impacts are
additive — when several risks impact the same
requirement, their impacts add together. It is possible
that impacts on a requirement can add up to greater
than 1, in which case the amount of attainment of that
requirement is zero. Intuitively, risks are treated as
completely independent. This matches the thinking
that dominates early phase risk assessment and risk
mitigation planning, the area we have targeted to date.
However, in order to make use of the model for later
phase applications, when designs are more detailed,
we will need to incorporate logical fault trees (“and”
and “or” combinations of risks). This extension is
ongoing work. Currently, when logical combinations
are needed, we work around this limitation manually.

Each effect is expressed as a number in the range
[0 — 1] representing the proportion of the risk that is
reduced if the mitigation is applied. Effects are
multiplicative — when several mitigations are applied
to reduce the same risk, their total effect is computed
as: (1 — the product, for each mitigation M, of
(1 — M’s effect)). Intuitively, mitigations act as
“filters” arranged in series, such that each mitigation
filters out its effectiveness’ proportion of the risks that
enter it.

The costs of the applied mitigations are additive.
In our NASA applications of DDP, mitigations can be
assigned costs in several dimensions each of which is
of importance to spacecraft, e.g., dollars, mass, power.

3 REFINED COST-BENEFIT MODEL

The focus of this paper is on our recent
refinements to DDP’s cost-benefit model. The key
areas of refinement are as follows:

* Make a distinction between different categories of
mitigations - preventions, detections and
alleviations.

e Separate the cost of performing a detection-style
risk mitigation from the cost of repairing the
problems it detects.

* Assign detection mitigations to distinct phases of
development, permitting the calculation of repair
cost to take into account the phase in which the
repair is conducted.

These areas of refinement are explored further in the

following subsections.

3.1 Categories of mitigations:
Mitigations are subdivided into:

* Preventions — activities that reduce the likelihood
of problems occurring, e.g., training of
programmers reduces the number of mistakes
they make.

* Detections — activities that detect problems, with
the assumption that detected problems will be
corrected, e.g., unit testing detects coding errors
internal to the unit, which are then corrected. The
net effect of detection and repair is a reduction in
the likelihood of risks remaining.

* Alleviations — assurance activities that decrease
the impact (severity) of problems should they
occur, e.g., programming a module to be tolerant
of out-of-bound values input to it from another
module.

3.2 Costs of mitigations:

The calculations of mitigations costs are:

* Preventions — incur the cost of performing the
prevention activity.

* Detections — incur two costs: that of performing
the detection itself, e.g., performing the unit test,
and that of repairing the problems it detects, e.g.,
correcting a problem found during unit test. The
cost of performing a detection is a function of the
detection itself, while the cost of repairing a
problem it uncovers is a function the problem.
DDP computes the total cost by summing the
detection’s performance cost and the problem

repair costs for the expected
number of problems that it
detects.

* Alleviations — incur a cost of
performing the alleviation
activity.

3.3 Time of detection and repair:
Assurance activities are
performed at certain times in the
course of a development. For our
applications, we find it sufficient to
make distinctions between only the
major phases of development, such
as requirements, design, coding,
unit test, etc. These times are taken
into account during the cost and
benefit calculations as follows:

* Preventions occur first. They
reduce the likelihood of the
risks they effect. The risks, their
likelihoods possibly reduced by
preventions, go forward into the
detection stages.

* Detections are applied in a
series of stages, one for each
development phase. In each
stage the detections of that stage
combine to reduce the
likelihood of the risks they
effect. This risk reduction has
two consequences — reduced
likelihoods of the risks going
forward into the next stage, and
incurred repair costs for the
risks discovered in this phase.
The repair cost of a risk is a
function of the risk and the time
at which it repaired (but, note,
not the detection used to find
the risk).

* Alleviations are applied last.
They reduce the severity
(impact) of the risks they effect,
but not their likelihood.

The cumulative effects of

mitigations on risk reduction and

cost accumulation are shown

graphically in Fig. 1.

Risks, with a-priori likelihoods

Preventions costs of preventions

decreased
likelihood

Detections at time 1 \

Repairs at time 1

decreased

likelihood Each time phase

incurs costs of
detections at that
time, and costs of

Detections at time 2 repairs for the risks
detected at that time.

: : Note that repair costs
Repairs at time 2 will depend on both

how many risks are
detected, and the time
° at which the repair

° takes place.

decreased
likelihood L

Detections attime T

Repairs attime T /

decreased
likelihood l

Alleviations costs of alleviations

decreased
severity

Risks, with residual Total cost of
likelihood & severity mitigations

Figure 1 — risk reduction and cost accumulation of mitigations

4 COST-BENEFIT MODEL FORMULAE
This section gives the formulae by which we
calculate costs and benefits.

4.1 Assigned values:
aprioriLikelihood(risk) : [0 - 1] - the likelihood of a
risk occurring if nothing is done to mitigate it.

cost(mitigation) : real - the cost of performing a
mitigation (which could be a prevention, detection
or alleviation).

repairCost(risk, time) : real - the cost of repairing a
risk at that time.

weight(requirement)
requirement.

: real - the importance of a

impact(risk, requirement) : [0 - 1] - the proportion
of the requirement lost if the risk occurs.

effect(prevention, risk): [0 - 1] - the proportion of
the risk’s likelihood reduced by the prevention.

effect(detection, risk) : [0 - 1] - the proportion of the
risk’s instances detected by the detection; when
followed by a repair, the net effect is to reduce the
likelihood of the risk remaining present.

effect(alleviation, risk) : [0 - 1] - the proportion of
the risk’s impact alleviated by the alleviation.

time(detection) : [1 - T] - the time at which a
detection is performed, where time values are
represented here as integers in the range 1 to T.

4.2 Intermediate calculations:

unmitigatedSeverityunmitigatedSeverity(risk) :
real - the risk severity if no mitigations are applied,
calculated as:

unmitigatedSeverity (r) =

2 (q O requirements) : weight(q) * impact(r, q)
unmitigatedRequirementAttainment(requirement)
real - the attainment of the requirement if no
mitigations are applied, calculated as:
unmitigatedRequirementAttainment(q) =
weight(q) *
2 (r Orisks) : impact(r, q) * aprioriLikelihood (r)

preventedLikelihood(risk) : [0 - 1] - the risk

likelihood after application of preventions, calculated as:
preventedLikelihood(r) =

aprioriLikelihood(r) *

M (p O preventions) : (1 - effect(p,r))

detectedLikelihood(risk, time) : [0 - 1] - the risk
likelihood after application of preventions and of
detections and repairs up to and including the time,
calculated as:

detectedLikelihood(r, i+1) =
detectedLikelihood(i) *
M (d O detections: time(d) = i+1) : (1 - effect(d,
)

where

detectedLikelihood(r,0) = preventedLikelihood(r)

alleaviatedness(risk) : [0 - 1] - the proportion of the
risk’s severity reduced by alleviations, calculated as:
alleaviatedness(r) =

M (a O alleviations) : (1 - effect(a, r))
4.3 Cost calculations:

sumPreventionCosts : real - the total cost of
applying the preventions, calculated as:
sumPreventionCosts =

2 (p O preventions) : cost(p)

sumDetectionCosts: real - the total cost of applying
the detections, calculated as:
sumDetectionCosts =

2 (d O detections) : cost(d)

sumRepairCosts(time): real - the total cost of
applying the repairs of that time, calculated as:
sumRepairCosts(t) = 2 (r O risks) : repairCost(r,
t) * (detectedLikelihood(r, t-1) -
detectedLikelihood(r, t))

sumAlleviationCosts : real - the total cost of
applying the alleviations, calculated as:
sumAlleviationCosts =

2 (a O alleviations) : cost(a)

totalCosts : real - the grand total costs, calculated
as.!
totalCosts =
sumPreventionCosts +
sumAlleviationCosts +
sumDetectionCosts +

2 (t0O[1-T]) : sumRepairCosts(t)

4.4 Benefit calculations:

unmitigatedRequirementAttainment(requirement)
: real - the attainment of the requirement if no
mitigations were applied, calculated as:

unmitigatedRequirementAttainment(q) =
weight(q) *
(1 - minimumof(1, Z(r O risks) :
aprioriLikelihood(r) * impact(r, q)))

mitigatedRequirementAttainment(requirement) :
real - the attainment of the requirement if mitigations
are applied, calculated as:
mitigatedRequirementAttainment(q) =
weight(q) *
(1 - minimumof(1, Z (r O risks) :
finalLikelihood(r) * alleviatedness(r) *
impact(r, q)))

totalUnmitigatedRequirementsAttained: real - the
total requirements attained if no mitigations are
applied, calculated as:
totalUnmitigatedRequirementsAttained =
2 (g O requirements) :
unmitigatedRequirementAttainment(q)

totalMitigatedRequirementsAttained: real - the
total requirements attained if mitigations are
applied, calculated as:
totalMitigatedRequirementsAttained =
Z (g O requirements) :
mitigatedRequirementAttainment(q)

totalBenefits : real - the grand total benefits,
calculated as:

totalBenefits =
totalMitigatedRequirementsAttained -
totalUnmitigatedRequirementsAttained

If need be, we could also sum up the mitigation
and repair costs on a phase-by-phase basis, so as to
determine not just the total costs, but the spending
profile over the course of time.

5 RAMIFICATIONS OF REFINED COST-
BENEFIT MODEL

5.1 Early-lifecycle detections

The advantage of detecting and repairing
problems early in the lifecycle is well known. For
example, the oft-quoted statistics on the exponential
increase in the cost to repair a requirements error if
left until design/code/test time. Our cost-benefit
model encompasses this phenomenon. Repair costs
are a function of both the kind of risk being repaired,
and the time at which the repair takes place. By
escalating a risk’s repair cost over time, the cost
calculations will exhibit the phenomenon. It is
possible to add an early detection for a risk, and as a
result see to both a benefit increase and a cost
decrease. The increased benefit comes from the
further reduction of risk that the extra detection and
repair provides. The decreased cost comes from the
early repair of a risk that would otherwise be detected
and repaired much later, when repair costs are
considerably higher. Cost considerations such as these
are discussed in [Kaner, 1996].

Example: suppose we have planned a software
development effort in which system testing is to be
applied. We may suppose that system testing will
detect coding errors, and also, to some extent,
requirements errors. Note that correcting requirements
errors as late as system test time is likely to be very
expensive. Now consider the addition to the
development plan of a requirements-time inspection:
if this detects some of the requirements errors that
would otherwise remain undetected until system
testing time, the net result may well be a reduction in
overall development cost.

Also evident is a law of diminishing returns.
Each additional detection of the same kind of risks
reduces only the residual proportion of risks that have
escaped the other detections.

Example: suppose there is in place a risk
detection with effectiveness of 0.9 (i.e., detection rate
for that kind of risk). Only 0.1 of the risk will escape
detection. Applying a second detection with
effectiveness of 0.9 will result in 0.01 of the risk
escaping the detection of both. Thus the additional
risk reduction from the addition of the second
detection was from 0.1 to 0.01, i.e., 0.09, far less than
the 0.9 risk reduction of the first one.

5.2 Return on Investment

Return-On-Investment (ROI) calculations can be
derived if requirements are valued on the same scale
as costs, as follows:

ROI = Benefit / Cost, where

Benefit =

(requirements attained with mitigations applied) -
(requirements attained without mitigations applied)
Cost = total cost of mitigations and repairs

In terms of our formulae,

ROI = totalCosts / totalBenefits

Provided that weight (the attribute of a requirement
representing its importance) is measured in (or
converted into) the same units as cost.

In our application of these methods for software
assurance planning in the NASA setting, we have a
range of approaches to valuing requirements. At the
conservative end, we may measure the attainment of
mission success as having the value of the total
development cost of the mission. More aggressively,
we might attempt to place a value on the science
return of a successful mission, for example, the value
of discovering water available on Mars.

5.3 Simplifying assumptions

Our cost-benefit model makes some simplifying
assumptions of the combined effects of mitigations on
both costs and benefits. For example, two similar
mitigations might discover substantially the same
risks, and so their combined effect may be less than
our formulae would predict. Another example is of
two mitigations that share the same setup costs - the
consequence might be that the cost to perform both of
them is less than the sum of their individual costs.

To date, we have not elaborated our model to
encompass such possibilities. Instead, when faced
with instances of these, we rely on manual
workarounds. For example, when we know that the
combination of mitigations M1 and M2 does not
match that predicted by our formulae, we manually
add a third mitigation, M1&M2. We assign to this the
combined effectiveness and cost values that we
believe hold for the combination of the two. When
selecting mitigations, we are careful to select at most

one of { M1, M2, MI1&M?2 }. Such workarounds
allow us to proceed with DDP applications, at the
expense of a small amount of additional effort.

As the need for such workarounds grows, we will
then consider further refinement of our cost-benefit
model. One area where such a need could indeed arise
is in the use of this approach to plan Independent
Validation and Verification (IV&V). At NASA,
IV&V is intended to supplement, not replace,
Software Quality Assurance. Thus IV&V may well
perform the same class of assurance activities that are
already being done as part of SQA.

6 STATUS AND CHALLENGES

The status of this work is that the cost-benefit
model described above is fully functional within the
DDP tool, and has been tested on real datasets. In
order to perform the testing, we retroactively added
cost data to datasets that resulted from earlier
applications of DDP (applications that took place
before the refined cost model was added).

These experiments have confirmed that the
implementation of the refined cost-benefit model is
capable of performing the calculations required. In
keeping with the DDP heritage, all of the values on
which a calculation is based are accessible to, and
changeable by, the end users. Such changes trigger
automatic recalculation. This feature allows users to
quickly tailor generic knowledge to the task at hand. It
can also be used to explore “what-if” scenarios, e.g.,
the benefits of investing research with the goal of
increasing the effectiveness of a requirements-time
inspection.

We have also tested the implementation by
applying it to other peoples’ small-scale examples of
cost-benefit calculations - see related work section (on
one occasion this uncovered an arithmetic error in the
other person’s example!).

The DDP tool is constructed to allow a group of
experts to arrive at a cost-effective risk mitigation
plan for specific projects. In past DDP applications,
selection of an appropriate suite of mitigations was
done by hand. Experts would first populate DDP with
data pertinent to the project in question. Then, they
would make selections of individual mitigations to
move towards an overall mitigation suite that
achieved the requisite levels of risk reduction while
making good use of available resources. In some

cases this led to revision of requirements, and even to

the recommendation to not go ahead with the current

plan. For descriptions of DDP and its usage, see

[Cornford et al, 2001].

As the cost-benefit model becomes more refined,
we predict a shift in the way in which DDP users
arrive at their mitigation suite selections. Rather than
selecting mitigations one by one, we foresee the need
to employ automation that will search for alternative
suites of mitigations. The motivations for this are
twofold:

* Assurance planning in a resource-constrained
setting is fundamentally an optimization problem.
If there are, say, 50 possible assurance activities
that may be selected, then the number of choices
of suites of selected mitigations is 2750. The
incremental approach of seeking a near-optimal
solution by addition / removal of individual
mitigations is not a good use of people’s time.

* The refined cost-benefit model induces more
complex interactions among mitigations, most
notably the influence of early detections on repair
costs. These make it hard to study mitigations on
a one-by-one basis. Their cost benefit
ramifications can be very different depending on
the other mitigations in the suite.

In response, we are exploring the use of automation
for search (to find near-optimal mitigation suites) and
sensitivity analysis (to know which of our data values
and choices have the most influence on our final
decisions). Experiments in this direction are
progressing using two approaches:

* Heuristic search - we have been using a genetic
algorithm to search for near-optimal mitigation
suites. E.g., we search for a suite of mitigations
that maximizes requirements attainment while
keeping its total cost below a user-provided
threshold. [Dunphy et al, 2001]

* Treatment leaning - in cooperation with Prof. Tim
Menzies, we have been exploring the use of his
treatment learning approach [Menzies&Singh,
2001].

The results so far are promising - we have applied

them to DDP datasets of upward of 80 mitigations

(which therefore have a search space in excess of

2780). Our experiments so far suggest that the two

approaches have complementary strengths and

weaknesses. The heuristic search approach, based on

Genetic Algorithms, has been applied to a simpler

version of the cost-benefit model than described here,
and upon that simpler version, appears to progress
rapidly in the direction of finding increasingly optimal
solutions. However, as we extend this to work with
the refined cost-benefit model, we may need to adjust
the internal operation of the genetic algorithm
accordingly.

Conversely, the treatment learning approach works
off of randomly generated mitigation selections, for
each of which the cost and benefit is computed by the
DDP tool with the cost-benefit formulac we have
described. The advantage is that as DDP’s cost-
benefit model evolves, this approach remains
unaffected. Currently, however, this approach suffers
from the bottleneck of generation of the large
numbers of random runs needed as the basis on which
to draw stable conclusions.

More broadly, we see the key future challenge
will be to relate the results of automated search back
to users. For example, we need to be able to report to
users not only the near-optimal (minimal risk)
solution for the exact cost level that they stipulated,
but also the options in the space “close” to that
solution. If they could afford to pay slightly more, do
there exist options with much improved benefit (lower
risk)? Which of their requirements are proving to be
the most problematic? At present, DDP makes use of
several custom visualizations of the set of
requirements, the set of risks, and the set of
mitigations (see [Feather et al, 2000] for details). Each
of these is well suited to displaying the status of a
given selection. What we feel will soon be needed is
an imaginative way to extend these visualizations to
present not just the current status, but the primary
options, as discovered through automated search. The
net result will be the judicious combination of
automation with expert human intuition.

7 RELATED WORK AND CONCLUSIONS

We have looked for related work in, particularly,
the software arena. There we have found that cost-
benefit analyses of individual activities have been
reported (e.g., reinspections - [Biffl et al, 2000];
regression testing — [Graves et al., 1998]; inspections
and structured testing — [Gack, 2000]). Studies of
overall process improvement also exist (e.g.,
[McGarry et al, 1998] that relate software defects,

productivity, development cycle time and effort
estimation to process ratings akin to the Software
Engineering Institute (SEI)’s Capability Maturity
Model (CMM)- [McGarry et al, 1998]). However, the
middle ground, of quantitatively planning the suite of
activities to apply to a given project, is relatively
under explored. In general there seems a lack of data
on, say, each of the key process areas of CMM level
3. We are now looking to the ongoing efforts of the
consortium http://www.cebase.org to gather such
data.

We see some relationship to the cost/benefit
work of [Karlsson & Ryan, 1997], since embodied in
a commercial tool [Focal Point AB]. 2-D graphical
plots of requirements, where the dimensions indicate
value of attainment against cost of attainment, appear
to serve as useful guides to software release planning.
Our work involves risk as the key factor that underlies
all our calculations, and in this respect is quite
different.

Risk estimation approaches (e.g., fault tree
analysis, baysian methods) appear very well suited to
the assessment of a single design. However, our
application is to the planning of mitigations, were the
driving concern is the cost-benefit-guided selection
from among a large set of such mitigations.

8 ACKNOWLEDGEMENTS

The research described in this paper was carried
out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States
Government or the Jet Propulsion Laboratory,
California Institute of Technology. Contributions
from, and discussions with, Burton Sigal (JPL),
Patrick Hutchinson (Wofford College, Spartanburg
SC), Peter In (Texas A&M), John Kelly (JPL), Tim
Kurtz (NASA Glenn), James Kiper (Miami Univ.,
Ohio) and Tim Menzies (U. British Columbia) have
been most useful in helping us formulate our ideas.

9 REFERENCES

[Biffl et al, 2000] S. Biffl, B. Freimut and
O.Laitenberger. “Investigating the cost-effectiveness
of reinspections in software development”, 23" Int.
Conference on Software Engineering, 2001, pp. 155-
164.

[Cornford et al, 2001] S.L. Cornford, M.S. Feather &
K.A. Hicks. “DDP — A tool for life-cycle risk
management”, [EEE Aerospace Conference, Big Sky,
Montana, Mar 2001, pp. 441-451.

[Dunphy et al, 2001] J. Dunphy, M.S. Feather & S.L.
Cornford. “Optimizing the Design of end-to-end
Spacecraft Systems using Risk as a Currency” (in
submission - please contact the authors for an advance
copy).

[Feather et al, 2000] M.S. Feather, S.L Cornford & M.
Gibbel. “Scalable Mechanisms for Requirements
Interaction Management”, [EEE Int. Conference on
Requirements Engineering, 2000.

[Focal Point AB] Focal Point™, a trademark of Focal
Point AB http://www.focalpoint.se

[Gack, 2000] “Defect Tracking + Inspections = $ in
Your Pocket”,
http://www.iteffectiveness.com/defecttracking.htm

[Graves et al, 1998]. T. Graves, M. Harrold, J. Kim,
A. Porter and G. Rothermel. “An Empirical Study of
Regression Test Selection Techniques”. 20" Int.
Conference on Software Engineering, 1998, pp. 267-
273.

[Kaner, 1996]. C. Kaner. “Quality Cost Analysis:
Benefits and Risks”, Software QA Vol 3, #1, p. 23,
1996.

[Karlsson & Ryan, 1997] J. Karlsson & K. Ryan. A
Cost-Value Approach for Prioritizing Requirements.
IEEE Software, Sept./Oct. 1997, 67-74.

[McGarry et al, 1998] F. McGarry, S. Burke & B.
Decker. Measuring the impacts individual process
maturity attributes have on software products.
Proceedings, 5" International Software Metrics
Symposium, 1998, pp. 52-60

[Menzies&Hu, 2001] T. Menzies & Y. Hu.
“Constraining Discussions in Requirements
Engineering via Models”, I International Workshop
on Model Based Requirements Engineering, San
Diego, California, Dec 2001.

